Произведение вектора на число - ПОНЯТИЕ ВЕКТОРА. РАВЕНСТВО ВЕКТОРОВ

Група в ViberГрупа в Facebook

Поурочные разработки по геометрии 9 класс

Произведение вектора на число - ПОНЯТИЕ ВЕКТОРА. РАВЕНСТВО ВЕКТОРОВ

Цели: ввести понятие умножения вектора на число; рассмотреть основные свойства умножения вектора на число.

Ход урока

I. Изучение нового материала (лекция).

1. Целесообразно в начале лекции привести пример, подводящий к определению произведения вектора на число, в частности такой:

Автомобиль движется прямолинейно со скоростью . Его обгоняет второй автомобиль, двигающийся со скоростью, вдвое большей. Навстречу им движется третий автомобиль, у которого величина скорости такая же, как у второго автомобиля. Как выразить скорости второго и третьего автомобилей через скорость первого автомобиля и как изобразить с помощью векторов эти скорости?

Ответ дает рисунок. Естественно считать, что скорость второго автомобиля равна 2 (произведению скорости первого автомобиля на число 2), а скорость третьего автомобиля равна –2 (произведению скорости на число –2).

2. Определение произведения вектора на число, его обозначение: (рис. 260).

3. Записать в тетрадях:

1) произведение любого вектора на число нуль есть нулевой вектор;

2) для любого числа k и любого вектора векторы и коллинеарные.

4. Основные свойства умножения вектора на число:

Для любых чисел k, l и любых векторов справедливы равенства:

1°. (сочетательный закон) (рис. 261);

2°. (первый распределительный закон) (рис. 262);

3°. (второй распределительный закон) (рис. 263).

Примечание. Рассмотренные нами свойства действий над векторами позволяют в выражениях, содержащих суммы, разности векторов и произведения векторов на числа, выполнять преобразования по тем же правилам, что и в числовых выражениях.

Например.


II. Закрепление изученного материала.

1. Выполнить практические задания № 776 (б; г; д), 777.

2. Решить задачи № 779, 781 (а; в) на доске и в тетрадях.

Решение

Дано:

а)

в)

3. Решить задачу № 780 (б).


III. Итоги урока.

Домашнее задание: изучить материал пункта 83; ответить на вопросы 14–17, с. 214; решить задачи №№ 775, 776 (а, в, е), 781 (б), 780 (а).






Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Все материалы доступны по лицензии Creative Commons — «Attribution-NonCommercial»

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2014-2019 Все права на дизайн сайта принадлежат С.Є.А.