Векторы. Метод координат. Движения - РЕШЕНИЕ ЗАДАЧ

Група в ViberГрупа в Facebook

Поурочные разработки по геометрии 9 класс

Векторы. Метод координат. Движения - РЕШЕНИЕ ЗАДАЧ

Основные вопросы программы: вектор, длина вектора, сложение векторов и его свойства, умножение вектора на число и его свойства, коллинеарные векторы, прямоугольные координаты точек на плоскости, формула расстояния между двумя точками плоскости с заданными координатами, координаты середины отрезка, уравнения окружности и прямой, применение векторов и метода координат к доказательству теорем и решению задач. Движения.

Задачи

1. Четырехугольник АВСD задан координатами своих вершин: А (–3; –2), В (–1; 2), С (2; 2), D (4; –2).

1) Найдите координаты середин сторон этого четырехугольника.

2) Докажите, что середины сторон четырехугольника АВСD являются вершинами ромба, и найдите площадь этого ромба.

2. Дан четырехугольник АВСD.

1) Определите вид четырехугольника АВСD, если , и выразите вектор через векторы и .

2) Выразите векторы через векторы и , если М, N, Р и Q – середины сторон АВ, ВС, СD и АD.

3) Определите вид четырехугольника МNPQ.

3. Дан правильный шестиугольник АВСDЕF со стороной а. Найдите скалярное произведение векторов: 1) ; 2) ; 3) ; 4) .

4. Найдите косинусы углов треугольника АВС, если А (1; 3), В (8; 2), С (5; –1).

5. В параллелограмме АВСD диагональ ВD равна стороне ВС, точка М – середина стороны ВС, отрезок DМ перпендикулярен к диагонали АС. Найдите углы параллелограмма.

6. Две окружности радиуса r с центрами О1 и О2 касаются друг друга в точке М. На первой окружности отмечена точка А, а на второй – точка В так, что хорды АМ и ВМ взаимно перпендикулярны. Докажите, что: 1) при параллельном переносе на вектор отрезок АС отображается на отрезок ВМ; 2) АВ = 2r.

7. На сторонах правильного треугольника построены квадраты. Докажите, что центры этих квадратов являются вершинами правильного треугольника.






Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Все материалы доступны по лицензии Creative Commons — «Attribution-NonCommercial»

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2014-2019 Все права на дизайн сайта принадлежат С.Є.А.