Построение правильных многоугольников - ДЛИНА ОКРУЖНОСТИ. ПЛОЩАДЬ КРУГА

Група в ViberГрупа в Facebook

Поурочные разработки по геометрии 9 класс

Построение правильных многоугольников - ДЛИНА ОКРУЖНОСТИ. ПЛОЩАДЬ КРУГА

Цель: выработать у учащихся умение строить некоторые правильные многоугольники.

Ход урока

I. Проверка домашнего задания.

1. Проверить решение учащимися задач № 1087 и № 1088 по тетрадям.

2. Решить на доске часть заданий, вызвавших затруднения у учащихся.


II. Построение правильных многоугольников.

1. Рассмотреть решение задачи 1 пункта 109.

2. Построение правильного треугольника, вписанного в окружность.

3. Рассмотреть решение задачи 2 пункта 109.

4. Построение правильного двенадцатиугольника, вписанного в окружность (рис. 310).

5. Построение правильных четырехугольника, восьмиугольника, шестнадцатиугольника, вписанных в окружность.

6. Построение правильных шестиугольника, треугольника, описанных около окружности.

7. Построение правильных четырехугольника, восьмиугольника, описанных около окружности.

 

III. Итоги урока.

Рассмотренные примеры показывают, что многие правильные многоугольники могут быть построены с помощью циркуля и линейки. Оказывается, что не все правильные многоугольники допускают такое построение. Доказано, например, что правильный семиугольник не может быть построен при помощи циркуля и линейки.

Однако с помощью этих инструментов можно построить правильный семнадцатиугольник.

Домашнее задание: выполнить аналогичное задание на чертежных листах (построение правильных многоугольников, вписанных в окружность, и построение правильных многоугольников, описанных около окружности).

Учитель может указать количество сторон правильного многоугольника. Лучшие работы пойдут в методическую копилку.

Решить задачи №№ 1095, 1096, 1097.






Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Все материалы доступны по лицензии Creative Commons — «Attribution-NonCommercial»

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2014-2019 Все права на дизайн сайта принадлежат С.Є.А.