Окружность, вписанная в правильный многоугольник - ДЛИНА ОКРУЖНОСТИ. ПЛОЩАДЬ КРУГА

Група в ViberГрупа в Facebook

Поурочные разработки по геометрии 9 класс

Окружность, вписанная в правильный многоугольник - ДЛИНА ОКРУЖНОСТИ. ПЛОЩАДЬ КРУГА

Цели: повторить теорему об окружности, вписанной в треугольник; повторить свойства касательной к окружности; сформулировать и доказать теорему об окружности, вписанной в правильный многоугольник; вырабатывать навыки решения задач.

Ход урока

I. Повторение изученного материала.

1. Сформулировать теорему об окружности, вписанной в треугольник.

2. Сформулировать свойство касательной к окружности.

3. Решить задачи №№ 1078 (устно) и 1079 (устно).

4. Решить задачи на доске и в тетрадях:

1) Окружность радиуса 5 см касается сторон угла А в точках В и С. найдите длины отрезков АВ и АС, если центр окружности удален от вершины угла на 13 см.

2) Две окружности пересекаются в точках А и В. Докажите, что прямая, проходящая через их центры, перпендикулярна к отрезку АВ.

3) Докажите, что радиус окружности, вписанной в равносторонний треугольник, вдвое меньше радиуса описанной около него окружности.

 

II. Работа с учебником.

1. Определение окружности, вписанной в многоугольник.

2. Разобрать по рисунку 308 учебника доказательство теоремы об окружности, вписанной в правильный многоугольник.

Дома учащиеся запишут доказательство этой теоремы.

3. Записать в тетради следствие 1 и следствие 2.

4. Записать в тетради правила нахождения для заданного правильного многоугольника центров описанной и вписанной окружностей, а также их радиусов:

1) Центром окружности, описанной около правильного многоугольника, является точка пересечения серединных перпендикуляров к сторонам многоугольника (достаточно найти точку пересечения серединных перпендикуляров к двум соседним сторонам), а радиусом является отрезок биссектрисы угла многоугольника, соединяющий его вершину с центром.

2) Для нахождения центра и радиуса окружности, вписанной в многоугольник, достаточно построить биссектрисы двух соседних углов, найти точку О их пересечения и опустить из нее перпендикуляр на соответствующую сторону многоугольника (точка О будет центром вписанной окружности, а перпендикуляр – ее радиусом).

 

III. Закрепление изученного материала.

Решить задачи на доске и в тетрадях:

1. Докажите, что все диагонали правильного многоугольника равны.

2. На каждой из сторон квадрата отмечены две точки, делящие каждую сторону в отношении 1 : : 1. Докажите, что эти точки служат вершинами правильного восьмиугольника.

3. Постройте с помощью транспортира и циркуля правильный пятиугольник.

 

IV. Самостоятельная работа.

Вариант I

1. Задачи №№ 1081 (б), 1083 (б), 1084 (г).

2. Докажите, что три вершины правильного шестиугольника, взятые через одну, служат вершинами правильного треугольника.

Вариант II

1. Задачи №№ 1081 (г), 1083 (а), 1084 (е).

2. Докажите, что четыре вершины правильного восьмиугольника, взятые через одну, служат вершинами квадрата.


V. Итоги урока.

Домашнее задание: повторить материал пунктов 105–107; ответить на вопросы 1–4, с. 290; решить задачи №№ 1085, 1131, 1130.






Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Все материалы доступны по лицензии Creative Commons — «Attribution-NonCommercial»

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2014-2019 Все права на дизайн сайта принадлежат С.Є.А.