Скалярное произведение в координатах. Свойства скалярного произведения векторов - СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ И УГЛАМИ ТРЕУГОЛЬНИКА

Група в ViberГрупа в Facebook

Поурочные разработки по геометрии 9 класс

Скалярное произведение в координатах. Свойства скалярного произведения векторов - СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ И УГЛАМИ ТРЕУГОЛЬНИКА

Цели: ввести понятие скалярного произведения в координатах; изучить свойства скалярного произведения векторов и закрепить их знание при решении задач.

Ход урока

I. Проверочная работа (10 мин).

Вариант I

1. Известно, что , где и – координатные векторы. Выпишите координаты вектора .

2. Дан вектор (0; 5). Запишите разложение вектора по координатным векторам и .

3. Даны векторы (–1; 2) и (2; 1). Найдите координаты суммы векторов и .

4. Найдите координаты вектора , если (–3; 0).

5. Даны векторы (5; 6) и (–2; 3). Найдите координаты вектора .

6. Две стороны треугольника равны 7 и 3 см, а угол между ними равен 120°. Найдите третью сторону треугольника.

7. в треугольнике АВС угол А = 45°, АВ = 2, АС = 3. Вычислите .

8. Скалярное произведение ненулевых векторов и равно нулю. Чему равен угол между векторами и ?

Вариант II

1. Дан вектор (3; 0). Запишите разложение вектора по координатным векторам и .

2. Известно, что , где и – координатные векторы. Выпишите координаты вектора .

3. Найдите координаты вектора –, если (0; –2).

4. Даны векторы (2; –1) и (3; –1). Найдите координаты разности векторов и .

5. Даны векторы (–1; 9) и (3; –2). Найдите координаты вектора .

6. В треугольнике МРQ угол M = 135°; МР = 5, МQ = 2. Вычислите .

7. Две стороны треугольника равны 3 и 9 м, а угол между ними равен 60°. Найдите третью сторону треугольника.

8. Чему равно скалярное произведение координатных векторов и ?


II. Изучение нового материала.

1. Скалярное произведение двух векторов можно вычислить, зная координаты этих векторов.

2. Изучение теоремы о скалярном произведении векторов в координатах и свойств скалярного произведения полезно построить так, чтобы учащиеся сами проводили алгебраические преобразования.

Полученные результаты можно записать в тетради и вынести в настенную таблицу:

Скалярное произведение в координатах



Свойства скалярного произведения векторов:

1) ≥ 0 ( > 0 при 0).

2) ;

3) .

4) .


III. Закрепление изученного материала.

1. Решить задачу № 1043 (объясняет учитель):

Дано: = 8; = 15; АВС = 120°.

Найти: .

Решение

Пусть ; , тогда по правилу треугольника (или по правилу параллелограмма вектор есть равнодействующая сила ).

C = 180° – 120° = 60° (сумма односторонних углов равна 180°). По теореме косинусов из треугольника ВСD найдем ВD.

BD2 = BC2 + CD2 – 2BC ∙ CD ∙ cos C = 82 + 152 – 2 ∙ 8 ∙ 15 ∙ = 64 + 225 – 120 = 169; = 169; = 13.

Ответ: 13.

2. Решить задачи № 1044 (а, б).

3. Устно № 1045.

4. Решить задачи № 1046, 1047 (б, в) на доске и в тетрадях.

5. Решить задачу № 1051.

Решение

1 ∙ 2 cos 60° + 2 ∙ 2 cos 60° = 2 ∙ + 4 ∙ = 1 + 2 = 3.

Ответ: 3.

6. Решить задачу № 1049 на доске и в тетрадях (для угла А объясняет учитель):

Решение

1) cos A =

cos A = ; cos A = , то A = 60°.

2) cos B = ;

= 1 + 12 = 13;

BC = = 3,5;

cos B = ≈ 0,9286; B находим по таблицам Брадиса: B ≈ 21°47′.

3) C = 180° – 60° – 21°47′ ≈ 98°13′.

Ответ: A = 60°; B ≈ 21°47′; C ≈ 98°13′.

7. Решить задачу № 1052.

Решение

= 52 – 2 ∙ 5 ∙ 2 cos 90° + 22 – 42 = 25 + 4 – 16 = 13; = 13.

Ответ: 13.

8. Решить задачу № 1066.

Решение

По условию .

= 9 ∙ 1 – 24 ∙ 1∙ 1 ∙ 0 + 16 ∙ 1 = 25.

= 25, тогда = 5.

Ответ: 5.


IV. Итоги урока.

Домашнее задание: изучить материал пунктов 101–104; ответить на вопросы 17–20 на странице 271 учебника; решить №№ 1044 (в), 1047 (а), 1054 (разобрать решение задачи и записать в тетрадь).






Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Все материалы доступны по лицензии Creative Commons — «Attribution-NonCommercial»

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2014-2019 Все права на дизайн сайта принадлежат С.Є.А.