Урок 1 - МОДУЛЬ ДЕЙСТВИТЕЛЬНОГО ЧИСЛА

Група в ViberГрупа в Facebook

Поурочные разработки по Алгебре 8 класс

Урок 1 - МОДУЛЬ ДЕЙСТВИТЕЛЬНОГО ЧИСЛА

Цели: ввести понятие модуля действительного числа, рассмотреть свойства и разъяснить геометрический смысл модуля. Ввести функцию y = |x|; правила построения графиков, содержащих функцию y = |x|, правила решения и оформления уравнений, содержащих модуль; формировать умение работать с модулем.

Ход урока

I. Организационный момент.

II. Анализ самостоятельной работы.

Если самостоятельную работу в целом написали хорошо, то данные задания даются домой только тем учащимся, которые получили отрицательные оценки. Если же с работой не справились многие, то эти задания разбираются в классе.

1) Найти значение выражения:

Р е ш е н и е:

О т в е т: 72,5.


2) Сравнить числа: а) и 24; б) и

3) Расставить числа в порядке убывания:

III. Объяснение нового материала.

1) Учитель предлагает вспомнить понятие модуля и найти значение выражения:

|34|, |–90|, |–0,3|.

2) Далее вводится понятие модуля действительного числа, свойства модуля.

3) Разъясняется геометрический смысл модуля на геометрической модели – числовой прямой.

S(a, b) = |a – b|.

Модуль – это расстояние.

4) График функции y = |x| на доске строит один из учеников класса. Построение графика функции выполняется по точкам.


Выписать свойства данной функции:

1. Область определения (–; +).

2. y = 0 при x = 0, y > 0 при

3. Функция y = |x| является непрерывной.

4. Функция ограничена снизу, но не ограничена сверху.

5. ymin = 0 при x = 0; ymax не существует.

6. Данная функция убывает на интервале (–; 0] и возрастает на интервале [0; +).

7. Область значений данной функции луч [0; +).

5) Решение уравнения |x – 2| = 3 представить двумя способами:

а) Переведем аналитическую модель |x – 2| = 3 на геометрический язык:

на числовой прямой находим точки, которые удалены от точки 2 на расстояние, равное 3. Значит, уравнение имеет два корня: –1 и 5.

б) Построим на одной координатной плоскости два графика у = |x – 2| и у = 3.

Абсциссы точек пересечения: –1 и 5.

IV. Закрепление нового материала.

1) Рассмотреть решение заданий № 16.2; 16.3; 16.4; 16.12; 16.16 (а, г); 16.19.

2) Повторить правила решения уравнений с модулями. Решить из учебника уравнения № 16.21; 16.23.

V. Подведение итогов.

Домашнее задание: прочитать материал параграфа 16, выучить правила данного параграфа. Решить задачи № 16.6; 16.11; 16.22.






Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Все материалы доступны по лицензии Creative Commons — «Attribution-NonCommercial»

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2014-2019 Все права на дизайн сайта принадлежат С.Є.А.