Природные источники углеводородов. Их переработка - Общие научные принципы химического производства - ХИМИЯ И ЖИЗНЬ

Група в ViberГрупа в Facebook

Химия - Универсальный справочник школьника подготовка к ЕГЭ

Природные источники углеводородов. Их переработка - Общие научные принципы химического производства - ХИМИЯ И ЖИЗНЬ

Нефть


Это природная сложная смесь углеводородов, в основном алканов линейного и разветвленного строения, содержащих в молекулах от 5 до 50 атомов углерода, с другими органическими веществами. Состав ее существенно зависит от места ее добычи (месторождения), она может помимо алканов содержать циклоалканы и ароматические углеводороды.

Газообразные и твердые компоненты нефти растворены в ее жидких составляющих, что и определяет агрегатное состояние.

- ЗАПОМНИ. Нефть — природная смесь углеводород, в основном алканов линейного и разветвленного строения, содержащих в молекулах от 5 до 50 атомов углерода.

Нефть — маслянистая жидкость темного (от бурого до черного) цвета с характерным запахом, нерастворимая в воде. Ее плотность меньше, чем у воды, поэтому, попадая в нее, нефть растекается по поверхности, препятствуя растворению кислорода и других газов воздуха в воде. Очевидно, что, попадая в природные водоемы, нефть вызывает гибель микроорганизмов и животных, приводя к экологическим бедствиям и даже катастрофам.

Существуют бактерии, способные использовать компоненты нефти в качестве пищи, преобразуя ее в безвредные продукты своей жизнедеятельности. Понятно, что именно использование культур этих бактерий — наиболее экологически безопасный и перспективный путь борьбы с загрязнением окружающей среды нефтью в процессе ее добычи, транспортировки и переработки.

В природе нефть и попутный нефтяной газ заполняют полости земных недр. Представляя собой смесь различных веществ, нефть не имеет постоянной температуры кипения. Понятно, что каждый ее компонент сохраняет в смеси свои индивидуальные физические свойства, что и позволяет разделить нефть на составляющие. Для этого ее очищают от механических примесей, серосодержащих соединений и подвергают так называемой фракционной перегонке, или ректификации.

Фракционная перегонка — физический способ разделения смеси компонентов с различными температурами кипения.

Перегонка осуществляется в специальных установках — ректификационных колоннах, в которых повторяют циклы конденсации и испарения жидких веществ, содержащихся в нефти.

Пары, образующиеся при кипении смеси веществ, обогащены более легкокипящим (т. е. имеющим более низкую температуру) компонентом. Это пары собирают, конденсируют (охлаждают до температуры ниже температуры кипения) и снова доводят до кипения. В этом случае образуются пары, еще более обогащенные легкокипящим веществом. Многократным повторением этих циклов можно добиться практически полного разделения веществ, содержащихся в смеси.

В ректификационную колонну поступает нефть, нагретая до температуры 320-350 °С. Ректификационная колонна имеет горизонтальные перегородки с отверстиями — так называемые тарелки, на которых происходит конденсация фракций нефти. На более высоких скапливаются легкокипящие фракции, на нижних — высококипящие.

В процессе ректификации нефть разделяют на следующие фракции:

· ректификационные газы — смесь низкомолекулярных углеводородов, преимущественно бутана и пропана с температурой кипения до 40 °С;

· газолиновую фракцию (бензин) — углеводороды состава от С5Н12 до С11Н24 (температура кипения 40-200 °С); при более тонком разделении этой фракции получают газолин (петролейный эфир, 40-70 °С) и бензин (70-120 °С);

· лигроиновую фракцию — углеводороды состава от С8Н18 до С14Н30 (температура кипения 150250 °С);

· керосиновую фракцию — углеводороды состава от С12Н26 до С18Н38 (температура кипения 180300 °С);

· дизельное топливо — углеводороды состава от С13Н28 до С19Н36 (температура кипения 200-350 °С).

Остаток перегонки нефти — мазут — содержит углеводороды с числом атомов углерода от 18 до 50. Перегонкой при пониженном давлении из мазута получают соляровое масло (С18Н28 - С25H52), смазочные масла (С28Н58 - С28H78), вазелин и парафин — легкоплавкие смеси твердых углеводородов. Твердый остаток перегонки мазута — гудрон — и продукты его переработки — битум и асфальт — используют для изготовления дорожных покрытий.


Крекинг


Полученные в результате ректификации нефти продукты подвергают химической переработке, включающей ряд сложных процессов. Один из них — крекинг нефтепродуктов. Мазут разделяют на компоненты при пониженном давлении, поскольку при атмосферном давлении его составляющие начинают разлагаться, не достигнув температуры кипения. Именно это и лежит в основе крекинга.

Крекинг — термическое разложение нефтепродуктов, приводящее к образованию углеводородов с меньшим числом атомов углерода в молекуле. Различают несколько видов крекинга: термический, каталитический, высокого давления, восстановительный.

Термический крекинг заключается в расщеплении молекул углеводородов с длинной углеродной цепью на более короткие под действием высокой температуры (470-550 °С). В процессе этого расщепления наряду с алканами образуются алкены:

image561

В общем виде эту реакцию можно записать следующим образом:

Образовавшиеся углеводороды могут снова подвергаться крекингу с образованием алканов и алкенов с еще более короткой цепью атомов углерода в молекуле:

При обычном термическом крекинге образуется много низкомолекулярных газообразных углеводородов, которые можно использовать как сырье для получения спиртов, карбоновых кислот, высокомолекулярных соединений (например, полиэтилена).

Каталитический крекинг происходит при температуре 450 °С в присутствии катализаторов, в качестве которых используют природные алюмосиликаты состава nAl2O3 · mSiO2.

Осуществление крекинга с применением катализаторов приводит к образованию углеводородов, имеющих разветвленную или замкнутую цепь атомов углерода в молекуле. Содержание углеводородов такого строения в моторном топливе значительно повышает его качество, в первую очередь детонационную стойкость — октановое число бензина.

Крекинг нефтепродуктов протекает при высоких температурах, поэтому часто образуется нагар (сажа), загрязняющий поверхность катализатора, что резко снижает его активность.

Очистка поверхности катализатора от нагара — его регенерация — основное условие практического осуществления каталитического крекинга. Наиболее простым и дешевым способом регенерации катализатора является его обжиг, при котором происходит окисление нагара кислородом воздуха. Газообразные продукты окисления (в основном углекислый и сернистый газы) удаляются с поверхности катализатора.

Каталитический крекинг — гетерогенный процесс, в котором участвуют твердое (катализатор) и газообразные (пары углеводородов) вещества. Очевидно, что регенерация катализатора — взаимодействие твердого нагара с кислородом воздуха — также гетерогенный процесс.

Гетерогенные реакции (газ — твердое вещество) протекают быстрее при увеличении площади поверхности твердого вещества. Поэтому катализатор измельчают, а его регенерацию и крекинг углеводородов ведут в «кипящем слое», знакомом вам по производству серной кислоты.

Сырье для крекинга, например газойль, поступает в реактор конической формы. Нижняя часть реактора имеет меньший диаметр, поэтому скорость потока паров сырья очень высока. Движущийся с большой скоростью газ захватывает частицы катализатора и уносит их в верхнюю часть реактора, где из-за увеличения его диаметра скорость потока понижается. Под действием силы тяжести частицы катализатора падают в нижнюю, более узкую часть реактора, откуда вновь выносятся вверх.

Таким образом, каждая крупинка катализатора находится в постоянном движении и со всех сторон омывается газообразным реагентом.

Некоторые зерна катализатора попадают во внешнюю, более широкую часть реактора и, не встречая сопротивления потока газа, опускаются в нижнюю часть, где подхватываются потоком газа и уносятся в регенератор. Там также в режиме «кипящего слоя» происходит обжиг катализатора и возвращение его в реактор.

Таким образом, катализатор циркулирует между реактором и регенератором, а газообразные продукты крекинга и обжига удаляются из них.

Использование катализаторов крекинга позволяет несколько увеличить скорость реакции, уменьшить ее температуру, повысить качество продуктов крекинга.

Полученные углеводороды бензиновой фракции в основном имеют линейное строение, что приводит к невысокой детонационной устойчивости полученного бензина.

Отметим, что значительно большей детонационной стойкостью обладают углеводороды с молекулами разветвленного строения. Увеличить долю изомерных углеводородов разветвленного строения в смеси, образующейся при крекинге, можно, добавляя в систему катализаторы изомеризации.


Попутный нефтяной газ


Месторождения нефти содержат, как правило, большие скопления так называемого попутного нефтяного газа, который собирается над нефтью в земной коре и частично растворяется в ней под давлением вышележащих пород. Как и нефть, попутный нефтяной газ является ценным природным источником углеводородов. Он содержит в основном алканы, в молекулах которых от 1 до 6 атомов углерода. Очевидно, что по составу попутный нефтяной газ значительно беднее нефти. Однако, несмотря на это, он также широко используется и в качестве топлива, и в качестве сырья для химической промышленности. Еще несколько десятилетий назад попутный нефтяной газ сжигали как бесполезное приложение нефти. В настоящее время, например, в Сургуте, богатейшей нефтяной кладовой России, вырабатывают самую дешевую в мире электроэнергию, используя как топливо попутный нефтяной газ.

Как уже отмечалось, попутный нефтяной газ по сравнению с природным более богат по составу различными углеводородами. Разделяя их на фракции, получают:

· газовый бензин — легколетучую смесь, состоящую в основном из пентана и гексана;

· пропанобутановую смесь, состоящую, как ясно из названия, из пропана и бутана и легко переходящую в жидкое состояние при повышенном давлении;

· сухой газ — смесь, содержащую в основном метан и этан.

Газовый бензин, являясь смесью летучих компонентов с небольшой молекулярной массой, испаряется даже при низких температурах. Это позволяет использовать газовый бензин в качестве топлива для двигателей внутреннего сгорания на Крайнем Севере и как добавку к моторному топливу, облегчающую запуск двигателя в зимних условиях.

Пропанобутановая смесь в виде сжиженного газа применяется как бытовое топливо (газовые баллоны) и для заполнения зажигалок. Постепенный перевод автомобильного транспорта на сжиженный газ — один из основных путей преодоления глобального топливного кризиса и решения экологических проблем.

Сухой газ, близкий по составу к природному, также широко используется в качестве топлива.

- ЗАПОМНИ. Разделяя попутный нефтяной газ на фракции можно получить: газовый бензин, пропанобутановую смесь и сухой газ (метан и этан).






Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Все материалы доступны по лицензии Creative Commons — «Attribution-NonCommercial»

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2014-2019 Все права на дизайн сайта принадлежат С.Є.А.