загрузка...

ПОУРОЧНЫЕ РАЗРАБОТКИ ПО ГЕОМЕТРИИ 9 класс

РЕШЕНИЕ ЗАДАЧ

Четырехугольники. Многоугольники

Основные вопросы программы: параллелограмм и его свойства; признаки параллелограмма; прямоугольник, ромб, квадрат и их свойства; трапеция, многоугольник, правильные многоугольники.

Задачи

1. На  рисунке  1  АЕFС – прямоугольник;  АС = 10 см,  АЕ = 3 см, ВМ = АМ.

1) Докажите, что МN – средняя линия треугольника АВС.

2) Найдите SАМNС.  3) Найдите SАВС.

Рис. 1

 

Рис. 2

 

Рис. 3

         

2. В параллелограмме АВСD биссектриса угла А пересекает сторону ВС в точке Е; АВ = а; АD = b. Найдите: 1) отрезки ВЕ и ЕС; 2) отрезки ВK и KD и SАВЕ, если K – точка пересечения АЕ и ВD, а угол А равен 60°.

3. На рисунке 2 АВСD – параллелограмм, угол 1 равен углу 2.

1) Докажите, что четырехугольник ВFDK – параллелограмм, и найдите его площадь и периметр, если KF = 10 см, ВD = 6 см, KОD = 150°. 2) Каким условиям должны удовлетворять отрезки KF и ВD, чтобы параллелограмм ВFDK был прямоугольником (ромбом, квадратом)?

4. Меньшая диагональ параллелограмма перпендикулярна к его стороне, а высота, проведенная из вершины тупого угла, делит большую сторону на отрезки, равные 9 см и 16 см.

найдите:  1)  стороны  и высоту параллелограмма, проведенную из вершины тупого угла; 2) диагонали параллелограмма; 3) площадь параллелограмма.

5. В параллелограмме АВСD проведена биссектриса АK угла А, точка K делит сторону ВС на отрезки ВK = 4 см и KС = 2см. Расстояние между параллельными прямыми АD и ВС равно 2см.

Найдите: 1) углы параллелограмма; 2) площадь треугольника АВС; 3) радиус окружности, описанной около треугольника DКС.

6. На рисунке 3 точки М, N, Р и Q – середины сторон четырехугольника АВСD, АС = 10 см, ВD = 18 см.

1) Докажите,  что  MNPQ  –  параллелограмм, и найдите его периметр. 2) Найдите площади четырехугольников АВСD и MNPQ, если угол ВОС равен 60°.

7. В равнобедренную трапецию, основания которой равны 2 см и 8 см, вписана окружность.

Найдите: 1) боковую сторону трапеции; 2) радиус вписанной окружности; 3) площадь трапеции.

8. В равнобедренной трапеции с основаниями АD и ВС угол D равен 60°, ВС = 12 см, а угол ВСА равен 30°.

1) Докажите, что треугольник АВС равнобедренный. 2) Найдите радиус окружности, описанной около треугольника АСD. 3) Найдите площадь трапеции АВСD.

9. В ромб, сторона которого равна диагонали и равна а, вписана окружность, а в эту окружность вписан правильный треугольник.

Найдите: 1) радиус окружности; 2) сторону треугольника; 3) площади ромба, круга и правильного треугольника.

10. Каждый угол правильного n-угольника А1А2… Аn равен 150°.

1) Найдите число сторон этого многоугольника. 2) Найдите А2А3А10. 3) Докажите, что треугольник А1А3В подобен треугольнику А6А10В, где В – точка пересечения диагоналей А1А6 и А3А10 этого многоугольника.

11. Внешний угол правильного n-угольника А1А2… Аn в три раза меньше угла этого многоугольника.

1) Найдите  число  сторон этого многоугольника. 2) Найдите А3А1А6. 3) Докажите, что четырехугольник А1А3А4А8 – равнобедренная трапеция.





загрузка...
загрузка...