загрузка...


ПОУРОЧНЫЕ РАЗРАБОТКИ ПО ГЕОМЕТРИИ 9 класс

МЕТОД КООРДИНАТ (10 часов)

Урок 7. Уравнение прямой

Цели: вывести уравнение прямой и показать, как можно использовать это уравнение при решении геометрических задач; развивать логическое мышление учащихся.

Ход урока

I. Самостоятельная работа (контролирующая, 10–15 мин).

Вариант I

Решить задачи № 959 (г), 968, 960 (б).

Вариант II

Решить задачи № 959(в), 967, 960 (в).

 

II. Изучение нового материала.

1. Уравнением  любой  прямой в прямоугольной системе координат является уравнение первой степени с двумя переменными (уравнение прямых, параллельных осям координат, также можно считать уравнением с двумя  переменными,  например,  уравнение  x = x0  можно  записать  в виде  x + 0y = x0) и, наоборот, любое уравнение первой степени с двумя переменными задает прямую.

2. Вывести уравнение данной прямой l в заданной прямоугольной системе координат (рис. 287): ax + by + c = 0.

3. Вывести уравнение прямой l, проходящей через точку M0 (x0; y0) и параллельной оси ОX (рис. 288) y = y0.

4. Ось OX имеет уравнение y = 0, а ось OY – уравнение x = 0.

 

III. Закрепление изученного материала (решение задач).

1. Учитель объясняет решение задачи:

напишите  уравнение  прямой,  проходящей  через  две  данные  точки Р (2; 1) и Q (–3; –1).

Решение

Уравнение прямой PQ имеет вид ax + by + c = 0. Так как точки P и Q лежат на прямой PQ, то их координаты удовлетворяют этому уравнению:

2cx – 5cy + c = 0 |: c  0,  тогда прямая PQ задана уравнением 2x – 5y + 1 = 0.

Ответ: 2x – 5y + 1 = 0.

2. Самостоятельно по учебнику учащиеся разбирают решение задачи № 972 (а), с. 245.

3. Решить задачу № 973 на доске и в тетрадях.

4. Решить задачу № 975.

Решение

Пересечение прямой с осью OX: y = 0, тогда 3x – 4 ∙  0 + 12 = 0;  3x = –12;  x = –4; точка А (–4; 0);

пересечение прямой с осью OY: x = 0, тогда 3 ∙  0 – 4y + 12 = 0;  –4y = –12;  y = 3; точка В (0; 3).

5. Решить задачу № 976 (повторить при решении способ сложения систем уравнений):

Точка пересечения прямых D (3; –2).

Ответ: (3; –2).

6. Решить задачу № 977.

Решение

Прямая, проходящая через точку М (2; 5) и параллельная оси OX, имеет вид: y = 5; прямая, параллельная оси OY, записывается уравнением: х = 2.

7. Самостоятельное решение учащимися задачи № 978.

8. Решить устно задачи:

1) Окружность задана уравнением (x – 1)2 + y2 = 9. Назвать уравнение прямой, проходящей через ее центр и параллельной оси ординат.

Решение

Центр О (1; 0) и параллельная оси OY прямая x = 1.

2) Окружность задана уравнением (x + 1)2 + (y – 2)2 = 16. Назвать уравнение прямой, проходящей через ее центр и параллельной оси абсцисс.

Решение

Центр А (–1; 2); прямая y = 2 параллельна оси OX.

 

IV. Итоги урока.

Домашнее задание: повторить материал пунктов 86–91; изучить материал пункта 92; вопросы 1–21, с. 249; решить задачи №№ 972 (б), 979; записать в тетрадях и разобрать решение задачи № 984 (с. 248 учебника); подготовиться к устному опросу по карточкам.






загрузка...
загрузка...
загрузка...