загрузка...


УРОКИ-КОНСПЕКТЫ ПО ГЕОМЕТРИИ 8 КЛАСС

Урок 50. КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ

Цели: способствовать применению учащимися полученных знаний при решении задач.

Ход урока

I. Проверка домашнего задания.

Привести доказательства признака касательной к окружности.

Заслушать одного ученика.

II. Решение задач.

1. Две окружности разных радиусов внешне касаются. Докажите, что отрезок их общей касательной, заключенный между точками касания, есть среднее пропорциональное между диаметрами этих окружностей.

ДОО1СС = 90°

ОО1 = R + r

CО = R – r

 = (r + R)2 – (R – r)2 = r2 + 2rR + R2 – R2 + 2rR – r2.

.

2. Через концы диаметра АВ окружности проведены две касательные к ней.  Третья  касательная  пересекает  первые две в точках С и D. Докажите, что квадрат радиуса этой окружности равен произведению отрезков СА и ВD.

Решение

1) Очевидно, что ΔСОD – прямоугольный.

2) ОK2 = СK · KD, но АС = СK, ВD = KD, поэтому ОK2 = АС · ВD.

III. Самостоятельная работа.

Вариант I

1. KМ и KN – отрезки касательных, проведенных из точки K к окружности с центром О. Найдите KМ и KN, если ОK = 12 см, МОN = 120°.

2. Диагонали ромба АВСD пересекаются в точке О. Докажите, что прямая ВD касается окружности с центром А и радиусом, равным ОС.

Вариант II

1. Найдите отрезки касательных АВ и АС, проведенных из точки А к окружности радиуса r, если r = 9 cм. ВАС = 120°.

2. В равнобедренном треугольнике АВС с основанием АС проведена медиана ВD. Докажите, что прямая ВD касается окружности с центром С и радиусом, равным АD.

Вариант III
(для более подготовленных учащихся)

1. Прямые АВ, АС, MN – касательные к окружности. Найдите отрезки касательных АВ и АС, если периметр треугольника АMN равен 24 см.

2. Отрезок СD – высота прямоугольного треугольника АВС, проведенная из вершины прямого угла С. Найдите радиус окружности с центром А, которая касается прямой СD, если СD = 4 см, АВ = 12 см.

IV. Итоги урока.

Домашнее задание: вопросы 1–7, с. 187; № 648.

Для желающих.

Две окружности разных диаметров внешне касаются. К ним проведены две общие касательные АС и ВD, где А и В – точки касания с первой окружностью,  а  С и D – со второй.  Докажите  АСDВ – равнобокая  трапеция.






загрузка...
загрузка...