загрузка...

ГЕОМЕТРИЯ 7 КЛАСС ПОУРОЧНЫЕ ПЛАНЫ

Глава II. ТРЕУГОЛЬНИКИ

(14 часов)

 

МЕДИАНЫ, БИССЕКТРИСЫ И ВЫСОТЫ ТРЕУГОЛЬНИКА (§ 2)

(3 часа)

 

Урок 3. СВОЙСТВА РАВНОБЕДРЕННОГО ТРЕУГОЛЬНИКА

 

Цели: изучить свойство биссектрисы (медианы, высоты) равнобедренного треугольника, проведенной к основанию; изучить признак равнобедренного треугольника и закрепить знание свойств равнобедренного треугольника при решении задач; развивать логическое мышление учащихся.

Ход урока

I. Проверка домашнего задания учащихся.

1. Один учащийся на доске готовит доказательство теоремы о свойстве углов при основании равнобедренного треугольника.

2. Второй учащийся решает на доске домашнюю задачу № 117 (по рис. 67).

3. Устно по готовым чертежам на доске (см. рис. 1-3) решаем задачи, предварительно повторив материал в ходе ответов учащихся на контрольные вопросы 10-12 на с. 50.

Найдите ДВА.

 

image24

 

II. Изучение нового материала.

1. Сформулировать и записать признак равнобедренного треугольника (обратная теорема свойства углов равнобедренного треугольника):

Если в треугольнике два угла равны, то он равнобедренный.

2. Решить задачу № 111 (по рис. 65) устно по заранее заготовленному чертежу на доске.

3. Изучить теорему о биссектрисе равнобедренного треугольника, проведенной к основанию (рис. 64):

1) перед изучением теоремы повторить первый признак равенства треугольников; повторить определение биссектрисы, медианы и высоты треугольника; определение и свойство смежных углов треугольника;

2) учить учащихся при формулировке теоремы выделять, что дано, что надо доказать; учить краткой записи доказательства теоремы.

4. Объяснение учителя. Мы установили, что биссектриса, медиана и высота равнобедренного треугольника, проведенные к основанию, совпадают. Поэтому справедливы также утверждения:

1) Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.

2) Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.

5. Устно решить задачу № 110.

 

III. Решение задач на закрепление изученного материала.

1. Решение задач (устно) по готовым чертежам (заранее изготовить плакаты с рисунками, см. рис. 1—5).

Найдите ДВА (учить учащихся читать чертеж по обозначениям на нем).

 

 

2. Решить задачу № 119 с записью решения на доске и в тетрадях.

Дано: ΔДЕК - равнобедренный; EF - биссектриса; ДК = 16 см, ДЕF = 43°.

Найти: KFДЕК, ЕFД.

 

 

Решение:

1) По условию EF - биссектриса ΔДЕК и ДЕF = 43°, тогда ДЕК = 2 · ДEF = 43° · 2 = 86°.

2) EF - медиана равнобедренного ΔДЕК (по свойству биссектрисы, проведенной к основанию), тогда KF = 1/2ДК; KF = 16 : 2 = 8 (см).

3) EF - высота равнобедренного ΔДЕК (свойство биссектрисы, проведенной к основанию равнобедренного треугольника). Значит, EFД = EFK = 90°.

Ответ: KF = 8 см; ДEK = 86°; EFД = 90°.

3. Решить задачу № 120 (а) с записью решения на доске и в тетрадях.

 

IV. Итоги урока.

Домашнее задание: повторить п. 15; изучить пункты 16-18, ответить на вопросы 4-13 на с. 50; решить задачи № 114, 118 и 120 (б).






загрузка...
загрузка...