загрузка...

ПОУРОЧНЫЕ РАЗРАБОТКИ ПО ГЕОМЕТРИИ 10 класс

Глава IV

ВЕКТОРЫ В ПРОСТРАНСТВЕ

 

§ 2. СЛОЖЕНИЕ И ВЫЧИТАНИЕ ВЕКТОРОВ. УМНОЖЕНИЕ ВЕКТОРА НА ЧИСЛО

(уроки 58-59)

 

Урок 58. Сложение и вычитание векторов. Сумма нескольких векторов

 

Цели урока:

1) повторить теоретические сведения по теме, изученные в курсе планиметрии;

2) рассмотреть правила треугольника и параллелограмма сложения векторов в пространстве, законы сложения векторов;

3) обратить внимание учащихся на два способа построения разности двух векторов;

4) изучить правило сложения нескольких векторов в пространстве и его применение при нахождении векторных сумм, не прибегая к рисункам.

Ход урока

I. Организационный момент

Постановка целей урока.

 

II. Повторение с целью подготовки учащихся к восприятию нового материала

Рекомендуется включить в домашнее задание с предыдущего урока повторение п. 80-82 из учебника «Геометрия. 7-9».

К доске вызвать четырёх учащихся для работы по карточкам, составленным таким образом, что задания, входящие в них, охватывают материал по теме «Сложение и вычитание векторов» из планиметрии.

Карточка № 1

1. Даны векторы  Построить вектор  пользуясь правилом треугольника.

2. Рассказать правило треугольника.

3. Упростить выражение

Карточка № 2

1. Даны векторы  Построить вектор  пользуясь правилом параллелограмма.

2. Рассказать правило параллелограмма.

3. Упростить выражение

Карточка № 3

1. Даны векторы  Построить вектор

2. Дать определение разности векторов.

3. Упростить выражение

Карточка № 4

1. Даны векторы:  Построить вектор

2. Рассказать правило сложения нескольких векторов.

3. Упростить выражение

 

 

III. Фронтальная работа с классом / проводится пока учащиеся готовятся у доски

Ученики отвечают на вопросы:

- Что называется вектором в пространстве? Его обозначения.

- Что называется длиной вектора? Ее обозначение.

- Какой вектор называется нулевым?

- Какие векторы называются коллинеарными?

- Какие векторы называются сонаправленными? Обозначение.

- Какие векторы называются противоположно направленными? Обозначение.

- Каким (сонаправленными или противоположно направленным) принять нулевой вектор?

- Какие векторы называются равными?

 

IV. Изучение нового материала

1. Начнется с прослушивания учащихся, работающих по карточкам.

2. Продолжит учитель, задача которого подчеркнуть, что сложение и вычитание векторов в пространстве вводится так же, как и на плоскости, и подчиняется тем же законам. Затем необходимо выделить из ответов учащихся главное (оставив эти фрагменты на доске), составить опорную схему по теме и дать учащимся время для работы над конспектом в тетради. Примерный вид конспектов:

Сложение и вычитание векторов  

 

1. Сумма и разность векторов:

image585

2. Законы сложения векторов:

image587

image586

 

image588

Правило многоугольника можно сформулировать также следующим образом: если  - произвольные точки, то

Это правило проиллюстрировано на рисунке для т = 7. Отметим, что если точки А1 и Аn, то есть начало первого вектора и конец последнего, совпадают, то сумма векторов равна нулевому вектору.

 

Можно дать творческое задание на дом - объявить конкурс на лучший конспект темы.

 

V. Закрепление изученного материала

а) Применение знаний в стандартной ситуации.

№ 327 (а, б, д) (текст - см. учебник)

(рис. 1).     

 

image589

 

№ 328 а

Дан тетраэдр ABCD (рис. 2).

Докажите, что

 

image590

 

Решение:  следовательно,

№ 331 а

Пусть ABCD — параллелограмм, а О - произвольная точка пространства.

Докажите, что   (рис. 3).

 

image591

 

Решение:  Так как ABCD - параллелограмм, то  следовательно,  В пространстве даны четыре точки А, В, С и D. Назовите вектор с началом и концом в данных точках, равный сумме векторов

Решение:

б) Самостоятельная работа обучающего характера с последующей самопроверкой (решение на обратной стороне доски)

№ 379, 380 (Текст - см. учебник)

(рис. 4).

 

image592

 

 (рис. 5)

 

image594

 

 

VI. Подведение итогов

В конце урока желательно с помощью ребят перечислить понятия, правила, свойства, которые были рассмотрены на уроке и которые необходимо запомнить.

 

Домашнее задание

П. 36,37.

I уровень: № 327 (в, г); 330 (а, б); 335 (а, б);

II уровень: № 327 (е); 330 (в, г, д); 335 (в, г); № 340; - конспект темы.






загрузка...
загрузка...