загрузка...


ПОУРОЧНЫЕ РАЗРАБОТКИ ПО АЛГЕБРЕ 8 КЛАСС

Глава I. РАЦИОНАЛЬНЫЕ ДРОБИ

 

§ 3. ПРОИЗВЕДЕНИЕ И ЧАСТНОЕ ДРОБЕЙ

 

Уроки 17-18. Дробно-линейная функция и ее график

 

Цель: рассмотреть свойства дробно-линейной функции и построение ее графика.

Ход урока

I. Сообщение темы и цели урока

 

II. Повторение и закрепление пройденного материала

1. Ответы на вопросы по домашнему заданию (разбор нерешенных задач).

2. Контроль усвоения материала (письменный опрос).

Вариант 1

1. Какая функция называется обратной пропорциональностью?

2. Постройте график функции у = 3/x. Найдите:

а) значение функции при x = 2,5;

б) значение аргумента, при котором у = 5.

3. График функции у = k/x проходит через точку А (2,5; -1,6). Найдите величину k.

 

Вариант 2

1. Какая кривая называется гиперболой?

2. Постройте график функции у = -2/x. Найдите:

а) значение функции при х = 0,8;

б) значение аргумента, при котором у = 0,4.

3. График функции проходит через точку А (-1,6; 5). Найдите величину k.

 

III. Изучение нового материала (основные понятия)

Рассмотрим функцию более общую, чем обратная пропорциональность. Функция   (где x — независимая переменная; a, b, с, d — некоторые числа, причем с ≠ 0 и bc - ad ≠ 0) называется дробно-линейной функцией. Обратите внимание, что данная функция представляет собой дробь, числитель и знаменатель которой являются линейными функциями.

Заметим, что требование в определении о том, что с ≠ 0 и bc - ad ≠ 0, существенно. Если это требование не выполняется, то дробно-линейная функция является на самом деле линейной (свойства и график такой функции были изучены в 7 классе).

а) Пусть с = 0 (при этом d ≠ 0). Подставив это значение в функцию , получим   (где числа ). Очевидно, что функция у = ах + Ь линейная.

б) Пусть bc - ad = 0 и с ≠ 0. Выразим из этого равенства  и подставим в формулу  Получаем  Умножим числитель и знаменатель дроби на число с. Имеем:  — некоторое число.

В этом случае также получили частный случай линейной функции.

 

 

Пример 1

Определить вид функции  и построить ее график.

Запишем данную функцию в виде  Сравнивая эту функцию с дробно-линейной функцией , видим что a = 2, b = -4, с = -3, d = 6. Легко проверить, что bc ad = (-4)(-3) – 2 · 6 = 12 - 12 = 0. Поэтому данная функция не является дробно-линейной. Разложим числитель и знаменатель дроби на множители и сократим ее. Имеем:   (при этом x – 2 ≠ 0, т. е. х ≠ 2). Поэтому данная функция является линейной. Построим график функции у = -2/3 (горизонтальная прямая) и исключим из него точку А с абсциссой х = 2 (показана стрелками).

 

 

Пример 2

Определить вид функции  и построить ее график.

 

 

Сравнивая эту функцию с дробно-линейной функцией , видим, что а = 2, b = -4, с = 0, d = 6. Поэтому данная функция не является дробно-линейной. Используя свойство сложения дробей, запишем функцию в виде  Поэтому данная функция является линейной. Построим график этой функции

 

Можно показать, что графиком дробно-линейной функции  (при с ≠ 0 и bc - ad ≠ 0) будет гипербола, сдвинутая вдоль оси абсцисс и оси ординат. Такой сдвиг является одним из способов построения графика этой функции (такой способ будет изучаться в 9 классе). Здесь мы рассмотрим другой способ построения. Для этого перечислим и обсудим свойства дробно-линейной функции.

1. Область определения функции — множество всех значений х, кроме х = -d/c (т. к. при таком значении знаменатель сх + d = 0).

2. Точка пересечения графика функции с осью ординат у = b/d при d ≠ 0, такой точки не существует при d = 0. Для ее определения подставим значение х = 0 в формулу, задающую функцию.

3. Точка пересечения графика функции с осью абсцисс х =  -b/a при а ≠ 0 и такой точки не существует при а = 0. Для ее определения положим у = 0 в формуле  и решим уравнение  или 0 = ах + b.

4. Вертикальная асимптота графика функции имеет уравнение х = -d/c, т. к. для такого значения х функция не определена и при приближении к этому значению |у| возрастает.

5. Горизонтальная асимптота графика функции имеет уравнение у = a/c, т. к. при больших значениях |х| числитель ах + b = ах и знаменатель сх + d = сх и функция

6. Графиком функции является гипербола, ветви которой симметричны относительно точки пересечения асимптот. Ветви гиперболы не пересекают асимптоты графика.

Видно, что свойства дробно-линейной функции обобщают свойства обратной пропорциональности у = k/x. Это понятно, т. к. функция у = k/x является частным случаем функции   при a = 0, d = 0 и b/c = k. Используя перечисленные свойства, легко построить эскиз графика дробно-линейной функции.

 

Пример 3

Построим график функции

Сначала найдем точки пересечения графика функции с осями координат. Так как любая точка на оси ординат имеет абсциссу х = 0, то для этого значениях вычислим  —точку A пересечения графика с осью ординат. Любая точка на оси абсцисс имеет ординату у = 0. Поэтому в формуле функции положим у = 0 и получим уравнение  Дробь равна нулю, если ее числитель 2х — 3 = 0 (а знаменатель при этом не равен нулю). Решив это уравнение, найдем х = 3/2 = 1,5 — точку В пересечения графика с осью абсцисс.

Найдем теперь уравнения асимптот. Вертикальную асимптоту определим из условия, что данная функция не определена, т. е. знаменатель -х + 1 равен нулю, откуда х = 1. Горизонтальная асимптота находится из условия, что |х| велико. В этом случае для функции  в числителе пренебрежем числом -3 (т. е. 2х - 3 ≈ 2х), в знаменателе пренебрежем числом 1 (т. е. -х + 1 ≈ -х). Тогда значение функции  Прямая у = -2 является горизонтальной асимптотой.

 

 

На координатной плоскости отметим точки А и В, построим асимптоты. Проведем ветви гиперболы, проходящие через точки А и В симметрично относительно точки С пересечения асимптот. При этом при х 1 ветви графика приближаются к вертикальной асимптоте, при больших |х| ветви графика приближаются к горизонтальной асимптоте. Ветви графика при этом асимптоты не пересекают.

 

IV. Задание на уроке и дома

1. Постройте график функции:

 

Ответы:

 

2. Постройте трафик функции:

Ответы:

 

3. Постройте график функции:

Ответы:

 

4. Постройте график функции:

image18

Ответы:

 

5. Постройте график функции:

image21

Ответы:






загрузка...
загрузка...