загрузка...

ХИМИЯ - УНИВЕРСАЛЬНЫЙ СПРАВОЧНИК ШКОЛЬНИКА - подготовка к ЕГЭ

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИИ

Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая, водородная

Типы химической связи

Учение о химической связи составляет основу всей теоретической химии.

Под химической связью понимают такое взаимодействие атомов, которое связывает их в молекулы, ионы, радикалы, кристаллы.

Различают четыре типа химических связей: ионную, ковалентную, металлическую и водородную.

Различные типы связей могут содержаться в одних и тех же веществах.

1. В основаниях: между атомами кислорода и водорода в гидроксогруппах связь полярная ковалентная, а между металлом и гидроксогруп- пой — ионная.

2. В солях кислородсодержащих кислот: между атомом неметалла и кислородом кислотного остатка — ковалентная полярная, а между металлом и кислотным остатком — ионная.

3. В солях аммония, метиламмония и т. д. между атомами азота и водорода — ковалентная полярная, а между ионами аммония или метиламмония и кислотным остатком — ионная.

4. В пероксидах металлов (например, Na2O2) связь между атомами кислорода ковалентная неполярная, а между металлом и кислородом — ионная и т. д.

- ЗАПОМНИ. Ковалентная связь образуется по обменному механизму, когда атомы образуют общие электронные пары. Ковалентная связь образуется по донорно-акцепторному механизму, когда донор имеет электронную пару, а акцептору принадлежит свободная орбиталь, которую эта пара может занять.

Причиной единства всех типов и видов химических связей служит их одинаковая химическая природа — электронно-ядерное взаимодействие. Образование химической связи в любом случае представляет собой результат электронно-ядерного взаимодействия атомов, сопровождающегося выделением энергии.

Способы образования ковалентной связи

Ковалентная химическая связь — это связь, возникающая между атомами за счет образования общих электронных пар.

Механизм образования такой связи может быть обменный и донорно-акцепторный.

1. Обменный механизм действует, когда атомы образуют общие электронные пары за счет объединения неспаренных электронов.

1) Н2 — водород.

Связь возникает благодаря образованию общей электронной пары s-электронами атомов водорода (перекрыванию s-орбиталей).

2) HCl — хлороводород.

Связь возникает за счет образования общей электронной пары из s- и р-электронов (перекрывания s-р-орбиталей).

image27

3) Cl2: в молекуле хлора ковалентная связь образуется за счет непарных р-электронов (перекрывание р-р-орбиталей).

4) N2: в молекуле азота между атомами образуются три общие электронные пары.

2. Донорно-акцепторный механизм образования ковалентной связи рассмотрим на примере иона аммония NH4+.

Донор имеет электронную пару, акцептор — свободную орбиталь □, которую эта пара может занять. В ионе аммония все четыре связи с атомами водорода ковалентные: три образовались благодаря созданию общих электронных пар атомом азота и атомами водорода по обменному механизму, одна — по донорно-акцепторному механизму.

Ковалентные связи классифицируют по способу перекрывания электронных орбиталей, а также по смещению их к одному из связанных атомов.

Химические связи, образующиеся в результате перекрывания электронных орбиталей вдоль линии связи, называются σ-связями (сигма-связями). Сигма-связь очень прочная.

image29

р-орбитали могут перекрываться в двух областях, образуя ковалентную связь за счет бокового перекрывания.

image28

Химические связи, образующиеся в результате «бокового» перекрывания электронных орбиталей вне линии связи, т. е. в двух областях, называются π-связями (пи-связями).

По степени смещенности общих электронных пар к одному из связанных ими атомов ковалентная связь может быть полярной и неполярной.

Ковалентную химическую связь, образующуюся между атомами с одинаковой электроотрицательностью, называют неполярной. Электронные пары не смещены ни к одному из атомов, т. к. атомы имеют одинаковую электроотрицательность — свойство оттягивать к себе валентные электроны от других атомов. Например,

т. е. посредством ковалентной неполярной связи образованы молекулы простых веществ-неметаллов.

- ЗАПОМНИ. σ-связи могут образовываться за счет перекрывания электронных орбиталей: s-s (H2), s-p (HCl), p-p (Cl2).

Ковалентную химическую связь между атомами элементов, электроотрицательности которых различаются, называют полярной.

Например, NH3 — аммиак. Азот более электроотрицательный элемент, чем водород, поэтому общие электронные пары смещаются к его атому.

image31

Характеристики ковалентной связи: длина и энергия связи

Характерные свойства ковалентной связи — ее длина и энергия. Длина связи — это расстояние между ядрами атомов. Химическая связь тем прочнее, чем меньше ее длина. Однако мерой прочности связи является энергия связи, которая определяется количеством энергии, необходимой для разрыва связи. Обычно она измеряется в кДж/моль. Так, согласно опытным данным, длины связи молекул H2, Cl2 и N2 соответственно составляют 0,074, 0,198 и 0,109 нм, а энергии связи соответственно равны 436, 242 и 946 кДж/моль.

Ионы. Ионная связь

Представим себе, что «встречаются» два атома: атом металла I группы и атом неметалла VII группы. У атома металла на внешнем энергетическом уровне находится единственный электрон, а атому неметалла как раз не хватает именно одного электрона, чтобы его внешний уровень оказался завершенным.

- ЗАПОМНИ. Ионы — это заряженные частицы, превращающиеся в атомы путем принятия или отдачи электронов.

Первый атом легко отдаст второму свой далекий от ядра и слабо связанный с ним электрон, а второй предоставит ему свободное место на своем внешнем электронном уровне.

Тогда атом, лишенный одного своего отрицательного заряда, станет положительно заряженной частицей, а второй превратится в отрицательно заряженную частицу благодаря полученному электрону. Такие частицы называются ионами.

Ионная связь — это химическая связь, возникающая между ионами.

Цифры, показывающие число атомов или молекул, называются коэффициентами, а цифры, показывающие число атомов или ионов в молекуле, называют индексами.

Металлическая связь

Атомы большинства металлов на внешнем уровне содержат небольшое число электронов — 1, 2, 3. Эти электроны легко отрываются, и атомы при этом превращаются в положительные ионы. Оторвавшиеся электроны перемещаются от одного иона к другому, связывая их в единое целое. Соединяясь с ионами, эти электроны образуют временно атомы, потом снова отрываются и соединяются уже с другим ионом и т. д. Бесконечно происходит процесс, который схематически можно изобразить так:

image34

Следовательно, в объеме металла атомы непрерывно превращаются в ионы и наоборот.

Связь в металлах между ионами посредством обобществленных электронов называется металлической.

- ЗАПОМНИ. Металлическая связь характерна для элементов, атомы которых на внешнем уровне имеют мало валентных электронов, слабо удерживающихся в атоме, и большое количество энергетически близких свободных орбиталей.

Металлическая связь имеет некоторое сходство с ковалентной, поскольку основана на обобществлении внешних электронов. Однако при ковалентной связи обобществлены внешние непарные электроны только двух соседних атомов, в то время как при металлической связи в обобществлении этих электронов принимают участие все атомы (рис. 6, 7). Именно поэтому кристаллы с ковалентной связью хрупкие, а с металлической, как правило, пластичны, электропроводны и имеют металлический блеск.

Рис. 6. Схема строения фрагмента кристаллического натрия

image36

Рис. 7. Схема металлической связи

Металлическая связь характерна как для чистых металлов, так и для смесей различных металлов — сплавов, находящихся в твердом и жидком состояниях. Однако в парообразном состоянии атомы металлов связаны между собой ковалентной связью (например, парами натрия заполняют лампы желтого света для освещения улиц больших городов). Пары металлов состоят из отдельных молекул (одноатомных и двухатомных).

Водородная связь

Химическую связь между положительно поляризованными атомами водорода одной молекулы (или ее части) и отрицательно поляризованными атомами сильно электроотрицательных элементов, имеющих наподеленные электронные пары (F, O, N и реже S и Cl), другой молекулы (или ее части) называют водородной.

Механизм образования водородной связи имеет частично электростатический, частично донорно-акцепторный характер.

Примеры межмолекулярной водородной связи:

При наличии такой связи даже низкомолекулярные вещества могут быть при обычных условиях жидкостями (спирт, вода) или легко сжижающимися газами (аммиак, фтороводород).

В биополимерах — белках (вторичная структура) — имеется внутримолекулярная водородная связь между карбонильным кислородом и водородом аминогруппы:

image40

Молекулы полинуклеотидов — ДНК (дезоксирибонуклеиновая кислота) — представляют собой двойные спирали, в которых две цепи нуклеотидов связаны друг с другом водородными связями. При этом действует принцип комплементарности, т. е. эти связи образуются между определенными парами, состоящими из пуринового и пиримидинового оснований: против аденинового нуклеотида (А) располагается тиминовый (Т), а против гуанинового (Г) — цитозиновый (Ц).

Вещества с водородной связью имеют молекулярные кристаллические решетки.






загрузка...
загрузка...